1,018 research outputs found

    Models of Social Groups in Blogosphere Based on Information about Comment Addressees and Sentiments

    Full text link
    This work concerns the analysis of number, sizes and other characteristics of groups identified in the blogosphere using a set of models identifying social relations. These models differ regarding identification of social relations, influenced by methods of classifying the addressee of the comments (they are either the post author or the author of a comment on which this comment is directly addressing) and by a sentiment calculated for comments considering the statistics of words present and connotation. The state of a selected blog portal was analyzed in sequential, partly overlapping time intervals. Groups in each interval were identified using a version of the CPM algorithm, on the basis of them, stable groups, existing for at least a minimal assumed duration of time, were identified.Comment: Gliwa B., Ko\'zlak J., Zygmunt A., Models of Social Groups in Blogosphere Based on Information about Comment Addressees and Sentiments, in the K. Aberer et al. (Eds.): SocInfo 2012, LNCS 7710, pp. 475-488, Best Paper Awar

    Distance metric choice can both reduce and induce collinearity in geographically weighted regression

    Get PDF
    This paper explores the impact of different distance metrics on collinearity in local regression models such as geographically weighted regression. Using a case study of house price data collected in Hà Nội, Vietnam, and by fully varying both power and rotation parameters to create different Minkowski distances, the analysis shows that local collinearity can be both negatively and positively affected by distance metric choice. The Minkowski distance that maximised collinearity in a geographically weighted regression was approximate to a Manhattan distance with (power = 0.70) with a rotation of 30°, and that which minimised collinearity was parameterised with power = 0.05 and a rotation of 70°. The results indicate that distance metric choice can provide a useful extra tuning component to address local collinearity issues in spatially varying coefficient modelling and that understanding the interaction of distance metric and collinearity can provide insight into the nature and structure of the data relationships. The discussion considers first, the exploration and selection of different distance metrics to minimise collinearity as an alternative to localised ridge regression, lasso and elastic net approaches. Second, it discusses the how distance metric choice could extend the methods that additionally optimise local model fit (lasso and elastic net) by selecting a distance metric that further helped minimise local collinearity. Third, it identifies the need to investigate the relationship between kernel bandwidth, distance metrics and collinearity as an area of further work

    Integrated optical multi-ion quantum logic

    Full text link
    Practical and useful quantum information processing (QIP) requires significant improvements with respect to current systems, both in error rates of basic operations and in scale. Individual trapped-ion qubits' fundamental qualities are promising for long-term systems, but the optics involved in their precise control are a barrier to scaling. Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions. Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, often the limiting elements in building up the precise, large-scale entanglement essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam pointing drifts. This allows us to perform ground-state laser cooling of ion motion, and to implement gates generating two-ion entangled states with fidelities >99.3(2)%>99.3(2)\%. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors. Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping

    Contribution of actin filaments and microtubules to cell elongation and alignment depends on the grating depth of microgratings

    Get PDF
    Additional file 1: Figure S1. (A) A phase contrast image of TCPS surface. Bar, 100 μm. (B) An imageshowing FN-lines (1 μm line and spacing) obtained by Atomic Force Microscopy (AFM) (Dimension 3100with a Nanoscope III controller, Digital Instruments) using silicon cantilevers (spring constant; 50 Nm-1)(RTESP, Veeco Probes) in contact mode. (C-E) SEM (Scanning electron microscopy) (6010 LV, JEOL)images showing the cross section of three different microgratings; 1 μm gratings with 0.35 um depth (C) and1 μm depth (D) and 2 μm gratings with 2 μm depth (E). Figure S2. (A) Fluorescence image of a RPE-1 cell stably expressing GFP/centrin cell on 1 μm gratings (1 μm deep). Bar, 30 μm. A yellow arrow indicates the direction of cell elongation. (B) Average cell aspect ratio (R) of cells on 1 μm gratings (0.35 or 1 μm deep) and 2 μm gratings with/without CD treatment. n: number of cells. ***P < 0.001. Data were analyzed using one-way ANOVA and a Bonferroni post hoc test. Error bar denotes the standard deviation of the mean. Figure S3. Alignment of actin and vinculin to the different substrates (Flat TCPS surface, FN-lines, and 1 μm gratings (0.35 or 1μm deep)). The alignment angle was measured as an angle difference of actin or vinculin orientation to the long axis of a cell on flat PDMS surface or the long axis of the FN-line or each micrograting. #: the number of cells. Error bar denotes the standard deviation of the mean. Figure S4. Merged image of MTs (Green fluorescence) and pattern (phase contrast) of cells on 1 μm grating (1 μm deep) in the presenceof CD at 1 μM

    End-to-End Real-time Catheter Segmentation with Optical Flow-Guided Warping during Endovascular Intervention

    Get PDF
    Accurate real-time catheter segmentation is an important pre-requisite for robot-assisted endovascular intervention. Most of the existing learning-based methods for catheter segmentation and tracking are only trained on small-scale datasets or synthetic data due to the difficulties of ground-truth annotation. Furthermore, the temporal continuity in intraoperative imaging sequences is not fully utilised. In this paper, we present FW-Net, an end-to-end and real-time deep learning framework for endovascular intervention. The proposed FW-Net has three modules: a segmentation network with encoder-decoder architecture, a flow network to extract optical flow information, and a novel flow-guided warping function to learn the frame-to-frame temporal continuity. We show that by effectively learning temporal continuity, the network can successfully segment and track the catheters in real-time sequences using only raw ground-truth for training. Detailed validation results confirm that our FW-Net outperforms state-of-the-art techniques while achieving real-time performance.Comment: ICRA 202

    The eyes know it: FakeET -- An Eye-tracking Database to Understand Deepfake Perception

    Full text link
    We present \textbf{FakeET}-- an eye-tracking database to understand human visual perception of \emph{deepfake} videos. Given that the principal purpose of deepfakes is to deceive human observers, FakeET is designed to understand and evaluate the ease with which viewers can detect synthetic video artifacts. FakeET contains viewing patterns compiled from 40 users via the \emph{Tobii} desktop eye-tracker for 811 videos from the \textit{Google Deepfake} dataset, with a minimum of two viewings per video. Additionally, EEG responses acquired via the \emph{Emotiv} sensor are also available. The compiled data confirms (a) distinct eye movement characteristics for \emph{real} vs \emph{fake} videos; (b) utility of the eye-track saliency maps for spatial forgery localization and detection, and (c) Error Related Negativity (ERN) triggers in the EEG responses, and the ability of the \emph{raw} EEG signal to distinguish between \emph{real} and \emph{fake} videos.Comment: 8 page

    Fluctuation-driven, topology-stabilized order in a correlated nodal semimetal

    Full text link
    The interplay between strong electron correlation and band topology is at the forefront of condensed matter research. As a direct consequence of correlation, magnetism enriches topological phases and also has promising functional applications. However, the influence of topology on magnetism remains unclear, and the main research effort has been limited to ground state magnetic orders. Here we report a novel order above the magnetic transition temperature in magnetic Weyl semimetal (WSM) CeAlGe. Such order shows a number of anomalies in electrical and thermal transport, and neutron scattering measurements. We attribute this order to the coupling of Weyl fermions and magnetic fluctuations originating from a three-dimensional Seiberg-Witten monopole, which qualitatively agrees well with the observations. Our work reveals a prominent role topology may play in tailoring electron correlation beyond ground state ordering, and offers a new avenue to investigate emergent electronic properties in magnetic topological materials.Comment: 32 pages, 15 figure

    Clotting activity of polyphosphate-functionalized silica nanoparticles

    Get PDF
    We present a silica nanoparticle (SNP) functionalized with polyphosphate (polyP) that accelerates the natural clotting process of the body. SNPs initiate the contact pathway of the blood-clotting system; short-chain polyP accelerates the common pathway by the rapid formation of thrombin, which enhances the overall blood-clotting system, both by accelerating fibrin generation and by facilitating the regulatory anticoagulation mechanisms essential for hemostasis. Analysis of the clotting properties of bare SNPs, bare polyP, and polyP-functionalized SNPs in plasma demonstrated that the attachment of polyP to SNPs to form polyP-SNPs creates a substantially enhanced synergistic effect that lowers clotting time and increases thrombin production at low concentrations. PolyP-SNP even retains its clotting function at ambient temperature. The polyP-SNP system has the potential to significantly improve trauma-treatment protocols and outcomes in hospital and prehospital settings
    corecore